Total binomial decomposition (TBD)

Thomas Kahle
Otto-von-Guericke Universität Magdeburg

Setup

- Let k be a field. For computations we use $k=\mathbb{Q}$.
- $k[p]:=k\left[p_{1}, \ldots, p_{n}\right]$ the polynomial ring in n indeterminates
- For each $u \in \mathbb{N}^{n}$ there is a monomial $p^{u}=\prod_{i=j}^{n} p_{j}^{u_{j}}$.
- For $u, v \in \mathbb{N}^{n}, \lambda \in k$ there is a binomial $p^{u}-\lambda p^{v}$.

Definition

A binomial ideal $I \subseteq k\left[p_{1}, \ldots, p_{n}\right]$ is an ideal that can be generated by binomials.

Binomial ideals

- Monomial ideals have boring varieties
- Binomial ideals: tractable and flexible
- For many purposes a trinomial ideal is a general ideal.

Binomial prime ideals can be characterized. Up to scaling p_{j} they are:
Definition
Let $A \in \mathbb{Z}^{d \times n}$. The toric ideal for A is the prime ideal

$$
I_{A}:=\left\langle p^{u}-p^{v}: u, v \in \mathbb{N}^{n}, u-v \in \operatorname{ker} A\right\rangle
$$

Binomial prime ideals can be characterized. Up to scaling p_{j} they are:

Definition

Let $A \in \mathbb{Z}^{d \times n}$. The toric ideal for A is the prime ideal

$$
I_{A}:=\left\langle p^{u}-p^{v}: u, v \in \mathbb{N}^{n}, u-v \in \operatorname{ker} A\right\rangle
$$

Primary ideals can be characterized too, but depends on $\operatorname{char}(k)$.

Monomial maps

Let $k\left[t^{ \pm}\right]=k\left[t_{1}^{ \pm}, \ldots, t_{d}^{ \pm}\right]$. Consider the k-algebra homomorphism

$$
\phi_{A}: k[p] \rightarrow k\left[t^{ \pm}\right], \quad p_{j} \mapsto t^{A_{j}}=t_{1}^{A_{1 j}} \cdots t_{d}^{A_{d j}}
$$

where A_{j} is the j-th column of A.

Monomial maps

Let $k\left[t^{ \pm}\right]=k\left[t_{1}^{ \pm}, \ldots, t_{d}^{ \pm}\right]$. Consider the k-algebra homomorphism

$$
\phi_{A}: k[p] \rightarrow k\left[t^{ \pm}\right], \quad p_{j} \mapsto t^{A_{j}}=t_{1}^{A_{1 j}} \cdots t_{d}^{A_{d j}}
$$

where A_{j} is the j-th column of A.

- Claim $I_{A}=\operatorname{ker} \phi_{A}$.
- \subseteq : $p^{u} \mapsto$??
- \supseteq : Exercise 1

Monomial maps

Let $k\left[t^{ \pm}\right]=k\left[t_{1}^{ \pm}, \ldots, t_{d}^{ \pm}\right]$. Consider the k-algebra homomorphism

$$
\phi_{A}: k[p] \rightarrow k\left[t^{ \pm}\right], \quad p_{j} \mapsto t^{A_{j}}=t_{1}^{A_{1 j}} \cdots t_{d}^{A_{d j}}
$$

where A_{j} is the j-th column of A.

- Claim $I_{A}=\operatorname{ker} \phi_{A}$.
- \subseteq : $p^{u} \mapsto$??
- \supseteq : Exercise 1
- This proves that I_{A} is prime
- The toric variety $V\left(I_{A}\right)$ has a monomial parametrization.

Toric ideals in application: Log-linear models

- One discrete random variable with values in $[n]$.
- A distribution is an element of the probability simplex

$$
\Delta_{n-1}=\left\{p \in \mathbb{R}^{n}: p_{j} \geq 0, \sum_{j} p_{j}=1\right\} .
$$

- A model is a subset $M \subseteq \Delta_{n-1}$.

Log-linear models

A log-linear model is specified by linear constraints on logs of p_{j}

$$
\log p=M \theta, \quad \theta \in \mathbb{R}^{d}
$$

for a fixed "model matrix" $M \in \mathbb{R}^{n \times d}$.

Log-linear models

A log-linear model is specified by linear constraints on logs of p_{j}

$$
\log p=M \theta, \quad \theta \in \mathbb{R}^{d}
$$

for a fixed "model matrix" $M \in \mathbb{R}^{n \times d}$.
Let's write $M=A^{T}$ and assume $A \in \mathbb{Z}^{d \times n}$. Then

$$
\log p_{j}=\theta A_{j}
$$

where A_{j} is the j-th column of A.

The log-linear constraint encodes a monomial parametrization:

$$
\begin{aligned}
\log p_{j} & =\theta A_{j} \Leftrightarrow \\
p_{j} & =e^{\theta A_{j}} \Leftrightarrow \\
p_{j} & =t^{A_{j}}
\end{aligned}
$$

if we put $t_{j}=e^{\theta_{j}}$ and let $t_{j}>0, j=1, \ldots, d$ be the parameters.

Observation

Each log-linear model is the intersection of a toric variety with Δ_{n-1}.

The independence model $=\mathbb{P}^{1} \times \mathbb{P}^{1}$

Some consequences

- Testing if a given distribution is in the model is checking binomial equations.
- Nearest point methods, Kullback-Leibler geometry
- Binomial equations can have meaning in terms of (conditional) independence \rightarrow Graphical models.
- The boundary of a log-linear model looks like the boundary of the polytope conv $\left\{A_{i}, i=1, \ldots, n\right\} \rightarrow$ Existence of the MLE.

Computational problems

Given A, how to find a finite generating set of I_{A} ?

- Let $B \subseteq \operatorname{ker}_{\mathbb{Z}} A$ be a lattice basis.
- Decompose $b=b^{+}-b^{-}$with

$$
b_{i}^{ \pm}=\max \left\{ \pm b_{i}, 0\right\}
$$

- Then

$$
\left\langle p^{b^{+}}-p^{b^{-}}\right\rangle \subseteq I_{A}
$$

Computational problems

Given A, how to find a finite generating set of I_{A} ?

- Let $B \subseteq \operatorname{ker}_{\mathbb{Z}} A$ be a lattice basis.
- Decompose $b=b^{+}-b^{-}$with

$$
b_{i}^{ \pm}=\max \left\{ \pm b_{i}, 0\right\}
$$

- Then

$$
\left\langle p^{b^{+}}-p^{b^{-}}\right\rangle \subseteq I_{A}
$$

Equality does not hold, but

$$
\left\langle p^{b^{+}}-p^{b^{-}}\right\rangle:\left(\prod_{j} p_{j}\right)^{\infty}=I_{A}
$$

Generators of toric ideals

- The most efficient computational way to find them is 4 ti 2 (FourTiTwo package in Macaulay2).
- The exponents appearing in a finite generating set are sometimes called a Markov basis \rightarrow Database
- Exercise: Given a toric ideal, how to find A ?

Some combinatorial commutative algebra
An abstract reason why binomial ideals are good are monoid gradings.

- Define a \mathbb{Z}^{d}-valued grading on $k[p]$ via $\operatorname{deg} p_{j}=A_{j}$.

Some combinatorial commutative algebra
An abstract reason why binomial ideals are good are monoid gradings.

- Define a \mathbb{Z}^{d}-valued grading on $k[p]$ via $\operatorname{deg} p_{j}=A_{j}$.
- I_{A} is homogeneous

Some combinatorial commutative algebra

An abstract reason why binomial ideals are good are monoid gradings.

- Define a \mathbb{Z}^{d}-valued grading on $k[p]$ via $\operatorname{deg} p_{j}=A_{j}$.
- I_{A} is homogeneous
- The Hilbert function of $k[p] / I_{A}$ takes values only 0 and 1 .
- 1 for all $b \in \mathbb{N} A=\left\{A u: u \in \mathbb{N}^{n}\right\}$ the monoid generated by A
- 0 for all other $b \in \mathbb{Z}^{d} \backslash \mathbb{N} A$

Let Q be a commutative Noetherian monoid.

Let Q be a commutative Noetherian monoid.

Monoid Algebras

The monoid algebra over Q is the k-vector space

$$
k[Q]:=\bigoplus_{q \in Q} k\left\{x^{q}\right\} \quad \text { with } \quad x^{q} x^{u}:=x^{q+u}
$$

A binomial ideal is an ideal generated by binomials

$$
x^{q}-\lambda x^{u}, \quad q, u \in Q, \lambda \in k .
$$

Examples

- $k\left[\mathbb{N}^{n}\right]=k\left[p_{1}, \ldots, p_{n}\right]$
- $k[\mathbb{N} A]=k\left[p_{1}, \ldots, p_{n}\right] / I_{A}$

This generalizes to

Eisenbud-Sturmfels

An ideal $I \subseteq k[p]$ is binomial if and only if $k[p] / I$ is finely graded by a commutative Noetherian monoid.

Combinatorial commutative algebra

This leads to a very nice theory of binomial ideals based on the separation of combinatorics (the monoid) and arithmetics (the coefficients)

Not every ideal is prime or toric!

- Every ideal $I \subseteq k\left[p_{1}, \ldots, p_{n}\right]$ is a finite intersection of primary ideals

$$
I=\bigcap_{i} Q_{i}, \quad \sqrt{Q_{i}}=P_{i} \text { is prime }
$$

(Q is primary, if in $k[p] / Q$ every element is regular or nilpotent.)

- If k is algebraically closed, every binomial ideal is an intersection of primary binomial ideals (Eisenbud/Sturmfels).
- Independent of k, decompositions of congruences point the way!
\rightarrow mesoprimary decomposition

Combinatorial versions of binomial ideals

A congruence on Q is an equivalence relation \sim such that

$$
a \sim b \Rightarrow a+q \sim b+q \quad \forall q \in Q
$$

- Congruences are the kernels of monoid homomorphisms
- Quotients $\bar{Q}:=Q / \sim$ are monoids again.

Congruences from binomial ideals

Each binomial ideal $I \subseteq k[Q]$ induces a congruence \sim_{I} on Q :

$$
a \sim_{I} b \Leftrightarrow \exists \lambda \neq 0: x^{a}-\lambda x^{b} \in I
$$

$\left\langle y^{3}, y^{2}(x-1), y\left(x^{2}-1\right)\right\rangle$

$$
\left\langle x^{2}-x y, x y-y^{2}\right\rangle
$$

Decompositions of binomial ideals in action

Consider distributions of 3 binary random variables:

$$
\left(p_{000}, p_{001}, \ldots, p_{111}\right)
$$

Assume we want to study the following conditional independencies:

$$
\mathcal{C}=\left\{X_{1} \Perp X_{2}\left|X_{3}, X_{1} \Perp X_{3}\right| X_{2}\right\}
$$

As you will see, this leads to binomial conditions:

$$
\begin{aligned}
& \left|\begin{array}{ll}
p_{000} & p_{010} \\
p_{100} & p_{110}
\end{array}\right|=0, \quad\left|\begin{array}{ll}
p_{001} & p_{011} \\
p_{101} & p_{111}
\end{array}\right|=0 \\
& X_{1} \Perp X_{2} \mid X_{3} \\
& \left|\begin{array}{ll}
p_{000} & p_{001} \\
p_{100} & p_{101}
\end{array}\right|=0, \quad\left|\begin{array}{ll}
p_{010} & p_{011} \\
p_{110} & p_{111}
\end{array}\right|=0 \\
& X_{1} \Perp X_{3} \mid X_{2}
\end{aligned}
$$

The prime decomposition of the corresponding ideal $I_{\mathcal{C}}$ is

$$
\begin{aligned}
& I_{\mathcal{C}}=\langle \left\langle\mathrm{rk}\left(\begin{array}{llll}
p_{000} & p_{001} & p_{010} & p_{011} \\
p_{100} & p_{101} & p_{110} & p_{111}
\end{array}\right)=1\right\rangle \\
& \cap\left\langle p_{000}, p_{100}, p_{011}, p_{111}\right\rangle \\
& \cap\left\langle p_{001}, p_{010}, p_{101}, p_{110}\right\rangle
\end{aligned}
$$

- The model (inside Δ_{7}) consists of three (toric) components
- An independence model $(d=4) X_{1} \Perp\left\{X_{2}, X_{3}\right\}$. conv $A_{i} \cong \Delta_{1} \times \Delta_{1}$ is a prism over a 3d-simplex.
- 2 copies of Δ_{3} embedded in faces of Δ_{7}.

Theorem

If for the distribution of 3 binary random variables both $X_{1} \Perp X_{2} \mid X_{3}$ and $X_{1} \Perp X_{3} \mid X_{2}$ hold, then either

- $X_{1} \Perp\left\{X_{2}, X_{3}\right\}$ ("the intersection axiom holds"), or
- $p_{000}=p_{100}=p_{011}=p_{111}=0\left(\right.$ " $X_{2}=1-X_{3}$ "), or
- $p_{001}=p_{010}=p_{101}=p_{110}=0\left({ }^{\prime} X_{2}=X_{3}\right.$ ").

